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Computational methods based on the time-dependent relaxation technique for obtaining 
finite beta stellarator equilibria with no net current are described. The computation grid is 
Eulerian corresponding to space-lixed non-orthogonal helical coordinates. The poloidal cross 
section, which is composed of rectangular grids, rotates with the same pitch as that of external 
helical conductors along the toroidal direction. By this choice, it is possible to handle com- 
plicated field topologies and to economize the computer memory. Also, numerical con- 
vergence is greatly improved compared with that in cylindrical coordinates. The developed 
code is applied to a typical low shear I = 2 stellarator (Wendelstein VII-A). Furthermore, 
breaking up of magnetic surfaces due to finite /I effect in a low aspect ratio I = 2 torsatron is 
shown. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

The stellarator concepts have recently been reconsidered as an attractive future 
fusion reactor system. An important advantage of stellarators over tokamaks is the 
possibility of net current-free steady operation. Recent experimental results of 
Wendelstein VII-A and Heliotron-E have demonstrated the good containment of 
plasmas comparable to that in equivalent tokamaks [ 1,2]. 

When we design the confinement device and assess the stability of the confined 
plasma, it is required to investigate the magnetohydrodynamic (MHD) equilibria 
with the use of realistic model. Since the toroidal stellarator configurations have no 
ignorable coordinates, 3-dimensional (3D) considerations are fundamental in the 
analysis of the MHD equilibria. Three different theoretical and numerical 
approaches have so far been developed to study the 3D MHD equilibria in 
stellarators. The first approach is the analytical method using the expansion in 
powers of the deviation from the magnetic axis [3-5). This may be adequate to 
obtain the first assessment of equilibrium and allows a systematic search in a 
relatively easy way. The second approach is to use the “averaging method” [6-S]. 
This formalism relies on the assumption that the nonaxisymmetric part of the 
magnetic field is small and periodic over a length much shorter than the major 
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radius of the system. The formalism is reduced to Greene and Johnson “stellarator 
expansion” [9-121, when the equilibrium equations are expanded in the inverse 
aspect ratio. The third approach, to which this study belongs, is to use the fully 
3-dimensional computational code. 

When obtaining the 3D equilibria numerically, there are two distinct choices of 
computational grids. The first method is to assume an existence of well-posed 
nested magnetic surfaces with one magnetic axis beforehand and to solve equi- 
librium with the use of the flux surfaces as the Lagrangian coordinate surfaces 
[13-151. The second method is to use an Eulerian grid. In this method, it is 
possible to handle complicated field topologies such as magnetic islands and 
stochastic regions. 

In the published codes, the Eulerian-grid method is typically classified into 
two cases; the case using rectangular grids based on cylindrical coordinates 
(Chodura-Schliiter code [16, 171) and that using a set of vacuum flux coordinates 
(NEAR code [18]). These two codes are, however, restricted to the FCT (Flux 
conserving torus) equilibrium. Our primary concern is the currentless plasma 
equilibrium, which is the most important case in the present-day experiments. 

The present calculation is based on the time-dependent relaxation technique 
using small values of resistivity and viscosity, which was recently developed by Park 
et al. [19]. Our code has the following characteristics: We employ the space-fixed 
helical coordinates whose cross section on the poloidal plane is composed of 
Eulerian rectangular grids and rotates with the same pitch as that of external helical 
conductors. MHD equations are approximated by a 3-dimensionally extended finite 
difference method in a real space and are time-advanced by a two-step Lax- 
Wendroff scheme. The method can be implemented to utilize realistic vacuum field 
configuration calculated from a set of coils by Biot-Savart’s law. Thus, this is 
applicable to the configuration study and the machine design as well as to the basic 
theoretical research. Equilibrium properties are investigated for a typical I= 2 
stellarator (Wendelstein VII-A). 

This paper is organized as follows. In Section 2, a helical coordinate system and 
its merits on the computation, basic MHD equations, a calculation method of a 
vacuum field, and numerical schemes are described in detail. In Section 3, we apply 
the present method to the equilibria of the typical low shear stellarator and study 
the physical aspects. Also, the convergence and the efficiency study of our code is 
made. Furthermore, an appearance of an ergodic region is discussed. Concluding 
remarks are summarized in Section 4. 

2. NUMERICAL PROCEDURES 

2.1. Geometry 

MHD equations which will be discussed in the next subsection are written in a 
non-orthogonal Eulerian helical coordinate system (u’, u*, u’). This system consists 
of rectangular grids (u’, u*) on the u3 = constant poloidal plane which rotates along 
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the toroidal direction with the same pitch as that of external helical conductors (see 
Fig. 1). This is an extension of the work of Herrnegger and Schneider [20] from 
helically symmetric to toroidal configuration. 

The relation between Cartesian coordinates (X, Y, 2) and pseudo-toroidal 
coordinates (r, 8,d) is written as 

x= (R, + r cos 0) cos qi 

Y=(R,+rcos8)sind 

2 = r sin 0, 

(1) 

where R0 denotes the average major radius. As shown in Fig. 1, the helical coor- 
dinates (u’, u*, u3) are defined by 

ul=rcos[-hb, 

u* = r sin 5, 

u3= -4, 

[=O-h# 

(2) 

(3) 

where h denotes the rotation number along $ direction, b, and b, are the semi-axis 
lengths from the origin to the ends of the computational domain along the ui and 
u* directions, respectively, and 6 is the amplitude of the deviation of helical 
geometrical axis from the generatrix circle (R = R,). The parameter 6 is useful when 
one analyzes properties in helical axis stellarators. In the figure, the 6 = 0 case is 
plotted. 

FIG. 1. Schematic drawing showing the helical coordinate system (u‘, I?, us) under consideration. 
Cartesian coordinates (X, Y, Z), cylindrical coordinates (R, 4, Z), and pseudo-toroidal coordinates 
(r, 8, q5) are also shown for reference. 
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Substituting Eqs. (2) and (3) into Eq. (l), we obtain the transformation of 
coordinates from Cartesian (A’, Y, Z) to helical coordinates (u’, u’, u’). 

X= (R, + 24: cos hz~~ + u2 sin hu3) cos u3 

Y = -(R,-, + u’, cos hu3 + u2 sin hu3) sin u3 

2 = -u: sin Im3 + u2 cos Au3 
(4) 

with 

u: = 24’ + 6. 

Then the covariant and contravariant components of metric tensor become 

g,, = 1.0, g,, = 1.0, 
g,, = (R, + u: cos hu3 + u2 sin Izu~)~ + h2{ (u!+)~ + (u”)‘}, 

g12 = g2, = 09 g,, = g,, = hU2, g,, = g,, = -h&c 

W 

g” = (R, + u: cos hu3 + u2 sin hu3)2 + h2(u2)2 
3 

g 

g22 = (Ro + u: cos hu3 + u2 sin hu3)’ + h2(u!+)2 
9 

g 
h2u1 u2 

g12=g21 = -* 

g ’ 

hu2 1 
g 

‘3=g3’= -7 
g23=g32=~, 

where 

ar ar 
&j=G’G 

(5b) 

(6) 

with 

r=Xe,+ Ye,+Ze,, (7) 

g = det Jg, I= (R. + u: cos hu3 + u2 sin hu3)2. (8) 

Here, gU is given as an inverse matrix element of g, and & denotes the Jacobian 
of the above transformation. 

The present helical coordinate system has the following technical merits for the 
stellarator equilibrium and stability simulation study: 

(1) The main advantage of an Eulerian grid is the possibility of including 
magnetic islands and stochastic regions in the computation area. 
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(2) The rectangular grid can eliminate the troublesomeness of the singular 
point on the coordinate origin, which appears in the quasi-toroidal or flux coor- 
dinates. Also, the time step limited by the Courant-Friedrichs-Lewy condition is 
not so severe compared with that in flux coordinates. 

(3) The computation using 3-dimensionally extended grids is, in general, very 
memory consuming. In the present helical coordinates, most of the grid points can 
be concentrated on the plasma region with which we are primarily concerned. Thus, 
from the memory economization point of view, the helical coordinates are superior 
to, for example, cylindrical coordinates. 

(4) In the cylindrical coordinates, the shape of the computation boundary 
sometimes imposes a severe restriction on the plasma volume when we calculate the 
vacuum field by Biot-Savart’s law from a set of coils and wish to maintain the coils 
outside the computation box. This is significant when the major axis of the plasma 
boundary is longer than the radius of the helical conductors and the high shear in 
the outer region plays an important role on the equilibrium properties (for exam- 
ple, Heliotron-E). In the helical coordinates, this problem is eliminated as can be 
seen from Fig. 1. 

(5) We can also treat helical axis stellarators without complexity by intro- 
ducing the helical amplitude parameter 6. 

The default is that the formulation of a MHD equation is rather complicated and 
additional store memories such as metrices and cristoffels are needed because of the 
non-orthogonality of the coordinates. However, the required memory is greater by 
about 30% than that in cylindrical coordinates. On the other hand, effective use 
rate of grid points reaches factors of 2 or 3 compared with those that in cylindrical 
coordinates. 

2.2. Relaxation Equations 

We find currentless MHD equilibria starting from an arbitrary nonequilibrium 
initial plasma and field configuration by means of a time-dependent relaxation 
method with small values of resistivity q, and viscosity v, [19]. The currentless 
stellarator equilibria is consistent with the resistive decay of the plasma current 
[21]. Namely, a stellarator in resistive equilibria has no net current on each flux 
surface. Viscosity is added to dissipate the kinetic energy. 

We consider that the relaxation progresses physically through excitation of MHD 
waves. The relaxation of the plasma pressure along a field line is driven by the 
sound wave. In the low beta case as is treated in this paper, however, the velocity 
of the sound wave is extremely slow compared with that of other MHD waves, 
namely, the shear Alfven wave and the fast wave. Therefore, the relaxation of the 
pressure along a field line is expected to be so slow that this process determines the 
slowest relaxation rate. Thus, we adopt an artificial method to accelerate this 
rate-determining process. 

To speed up the relaxation, calculations are performed in two steps [19]. In the 
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first step, by introducing an artificial parallel sound wave velocity v,, the following 
equations are solved until the condition B .Vp = 0 is satisfied: Step 1: 

*=B Vu. 
at . d 

au. -=B.Vp 
at (Bfixed). Pb) 

The magnetic field B is fixed during this process. In this calculation, we can obtain 
a uniform pressure distribution along each field line for a given magnetic field con- 
figuration. During the time integration of Eqs. (9a) and (9b), the kinetic energy 
K, = s vzd3x is monitored. When K, reaches a maximum and starts to decrease, we 
set v, = 0 to remove the kinetic energy. An energy minimum state is obtained by the 
repetition of this operation. (see Fig. 2). 

The second step is the following relaxation process Step 2: 

g=Vx(VxB-q,j) 

p,,j=VxB (pfixed). 

100 200 300 400 500 600 7 

T, (~~3 

‘0 

(lob) 

(1Oc) 

0 

FIG. 2. Variation of pseudo-kinetic energy K, versus time T, during the first step of the relaxation. 
The geometrical parameters correspond to those of Wendelstein VII-A: I= 2, m = 5, 6, = 1.0, b, = 1.8, 
R. = 20.0. The dissipation parameters of ql. is 3 x lo-‘. Viscosity is not included. Here, pmax = 0.004 is 
used. 
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Here p is the mass density which is kept constant, V is the fluid velocity, j is the 
current density, v, is the artificial viscosity, rlG is the artificial electric resistivity, p0 
is the permeability of the vacuum, and 1 denotes the unit dyad. The pressure p is 
fixed during this process. For a given pressure distribution, the magnetic field 
conliguration which satisfies the equilibrium condition is determined. Equation 
(10a) gives the equilibrium condition j x B = Vp, when both the time variation of 
momentum (the left-hand side) and the viscosity v, are zero. 

We judge that an equilibrium state is attained when the left-hand side term of 
Eq. (10a) becomes zero. The equilibrium obtained in this formalism is the one with 
small but steady plasma flow. This is because qaj is compensated by V x B for a 
steady state in Eq. (lob). Note that V is the velocity, but its dynamic pressure does 
not affect the force balance in the obtained equilibrium, since the V . pVV term is 
artificially omitted in the momentum equation (10a). Let us make an examination 
how much the viscosity term affects the solution of Eqs. (lOa)-(lob). We make an 
order estimation between the two terms of V .pl and v,V*V. 

IvJ2V I , x 
IV.PI 

vat L3xIL2) hl lo-6 N IO-5 
POIL N 

(11) 

Here, typical values of v, = 10P5, V,,, = 10e3, p0 = 10e3 N lo-*, and L = 1 (nor- 
malized values, see below) are assumed. It can be understood that the introduction 
of the viscosity term does not break the equilibrium condition (namely, j x B = VP) 
remarkably. Here, L denotes the characteristic length and V,,,,, and p0 are the 
maximum velocity and the peak pressure, respectively. 

During the time integration of Eqs. (10a) and (lob), the kinetic energy K2 = 
S p ) P’[* d3x, as well as the residual fore R,= ((VP-j x B)*), is monitored (( ) 
indicates the volume average). When both R, and K, reach a steady state, we judge 
that the equilibrium state is attained, as mentioned above. 

The first step (Eq. (9)), namely, the relaxation along field lines, and the second 
step (Eq. (lo)), namely, the one perpendicular to field lines, are alternated. We con- 
tinue the repetition of this two-step calculation until a steady state is achieved (see 
Fig. 3). Both steps are time-advanced with the time intervals of AT, and AT,, 
respectively. Empirically, we set both AT, and AT, about a hundred rA. The typical 
examples of the variations of K, , K2, and R, are shown and discussed in Section 3.1. 

2.3. Normalization and Boundary Condition 

In actual calculations all variables are normalized by the following three 
characteristic quantities and their combinations: BO (toroidal magnetic field), 
VA = B,/& (toroidal Alfven speed), and b (average minor radius of computa- 
tion box). Hence, time, current density, mass density, and electric resistivity are 
normalized by rA = b/V,, B,/p,,b, B,/p, V’,, and p,,bVA, respectively. 

Rectangular boundary walls in which plasma is filled are assumed to be perfect 
conductors. Namely, the boundary conditions for the magnetic field are 
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f,,,,,,,,,l,,,,,,,,,,,,,,,,,,,I,,,,,,,,,~ 
0 1000 2000 3000 4000 

T, ( rA) 

FIG. 3. Variation of the residual force R, versus time T2. 

8n.B 
- = 0, at (124 

and for the plasma velocity 

nx(VxB)=O, 

n.V=O, 

(12b) 

(13) 

where n is the normal unit vector on the boundary. Note that the magnetic field 
component perpendicular to the wall is fixed as Eq. (12a), but not for the compo- 
nent parallel to the wall. Therefore, net toroidal current can change during the 
relaxation process. 

2.4. Calculation of Vacuum Magnetic Fields 
Vacuum magnetic fields B, generated by helical coils are calculated by Biot- 

Savart’s law. Each coil is assumed to be a filament, which we take to be closed 
polygons. For good numerical accuracy, up to 200 segments per pitch are used in 
each closed polygon. 

Owing to the finite difference approximation, the condition 

j,=VxB,=O (14) 

is not necessarily satisfied on each grid point, especially near the coil position. To 
eliminate the undesirable intluence due to the induced finite current j,,, the spurious 
Lorentz force 

F,=jhxBh=V. B,B,+l (15) 

is subtracted in Eq. (10a). 
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Magnetic fields produced by toroidal field coils and vertical field coils in 
experiments are given by the analytical form in the present calculation. The toroidal 
field is expressed by 

and the vertical field by 

B,=B,e,. (17) 

2.5. Numerical Scheme and Formulation 

Equations (9) and (10) are formulated in the helical coordinates (u’, u2, u3), and 
are solved in a real space for all of the three directions. The time development of 
the equations is solved by a 3-dimensionally extended finite difference method of 
the two-step Lax-Wendroff scheme (second-order accurate in both time and space). 
To stabilize the scheme, some artificial smoothing with respect to both space and 
time is performed [22,23]. For the explicit difference scheme used, the maximum 
width of time step permitted by the numerical stability condition is determined by 
the maximum toroidal Alfven velocity V,: 

(18) 

where At is the time step and Au is the minimum spatial grid spacing among the 
ul, u*, and u3 directions. We used 0.6 -0.9 of the maximum value (Au/V,). 

By taking advantage of the coil symmetry, equilibrium calculations are made 
in just one-half of a toroidal field period. The simulation domain is typically 
implemented on (37 x 37 x 18) grid points, where 37 refers to the grids (ul, u2) on 
each poloidal plane, and 18 to the toroidal direction. 

By the use of the metric tensors in 2.1, we obtain the following system of partial 
differential equations for the pseudo-velocity v,, pressure p, and the contravariant 
components of the velocity Vi and magnetic field B’, 

$6, Bi$ 
ap vi 
-= -(V.T)‘+v,S’, at 

(19a) 

(19b) 

(204 
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and 

m=l j=l (i, ('{ji2} Z+ vh$ {rij})) 

-=- {Jg( V’B’- V’B’) - tj, jk} 

--$ {&(VkBi- ViBk)-qojj}] 

. 

Here, 

Wb) 

c=) 

(21) 

is the cristoffel symbol, Si designates the Kronecker’s delta, Bi and ji are the 
covariant components of magnetic field and current density, respectively. The 
permutation (i + j + k + i + . . . ) is assumed in Eqs. (20b) and (20~). 

Periodic boundary conditions for u,,p, and contravariant components of the 
magnetic field and plasma velocity at u3 = 0 and x/m (one-half of a toroidal field 
period) are 

u,(u’, u2, -Ad) = -u,(u’, -22, Au3), 

:+Au’ - 2.2, u2, 

P(U', u2, -Au3)=p(u1, -u2, Au3), 

-d, u2, 
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B’ -22, 2, 

B2(d, u2, - Au3) = B2(u1, -u2, Au3), 

- 22, u2, 

B3(u’, u2, - Au3) = B3(u1, - u2, Au3), 

B3 -22, u2, 

V’(u’, u2, - Au3) = V’(u’, - u2, Au3), 

I” u1,u2,~+A4u3 - 22, u2, 
m 

V2(u1, z12, -Au3)= -V2(u1, -u2, Au3), 

-22, u2, 

V3(u’, u2, -Au3)= -V3(u1, -u2, Au3), 

V3 u1,u2,;+Au3 - 2.41, 22, (22) 

where Au3 denotes the grid interval along the u3 direction. 
The shape and the size of the rectangular computational boundary are deter- 

mined based on the following considerations: 

(1) The semi-axis ratio f= b,/b, of the rectangular poloidal plane is chosen 
according to the ellipticity E of the initial vacuum magnetic surfaces. 

(2) The computation box is made large enough to include the flux surfaces 
under interests. 

(3) Enough spacings between a set of coils and the box boundaries are taken 
in order to eliminate the undesirable influences of j,. 

The initial pressure profile is given on each poloidal plane (I?, u2) by the cosine 
function distribution. The effect of ellipticity E is also taken into account, 

p(d, u2) = 
+-(cos(Z)+l) (d<r,) 

(23) 
0 (d> r,) 
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with 

d= ((~‘)*+(~~)*)(cos~~,+~*~in*~,) (24) 

(25) 

where rc designates the critical average radius limiting the initial plasma boundary, 
and einit is the initial phase. This choice improves the convergence of the 
equilibrium calculations and gives a better definition of the magnetic surfaces of 
finite beta. 

2.6. Method of Equilibrium Check by Full MHD Equations 

It is necessary to check whether the solution obtained in the present numerical 
scheme really satisfies the equilibrium condition or not. The solution is used as an 
initial input data in the full MHD equations, 

ap -= -v. (pV) at 
w at= -v.[,vv+,1-$(BB-;lq] 

aB 
z=Vx(VxB) 

ap -= -yV.(pV)+(y-l)V.Vp, at 

(27) 

(28) 

(29) 

where y is the ratio of specific heat. 
If the initial configuration is remained for fairly long time, say, about 1000 rA, we 

judge the solution has the character with good equilibrium condition. 

3. APPLICATION 

In this section, applications of the computational code have been made to a typi- 
cal I = 2 stellarator configuration (Wendelstein VII-A). Efficiencies and reliabilities 
of the present code are also discussed in detail in the first half of Section 3.1. In 
Section 3.2, an appearance of magnetic islands and ergodization of a magnetic 
surface in a finite b equilibrium are shown. 

3.1. Wendelstein VIZ-A 

Wendelstein VII-A is an I = 2, m = 5 conventional stellarator with little shear. 
This configuration can avoid dangerous field line resonances by appropriately 
choosing the rotational transform 1. The pitch number m is reduced so that the 
magnetic well is created at the expense of small t value. 
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In the present calculation, we study the case of &=0.39, where lo denotes the 
vacuum rotational transform at the magnetic axis. And, following geometrical 
parameters are used: &,=20.0, bi = 1.0, bZ= 1.8, rh=2.3, rc= 1.0, and E= 2.0. 
Vacuum magnetic field is calculated by approximating each helical conductor with 
single filament. In the following, qa = 3 x lo-’ is used. The beta value p (the ratio 
of plasma kinetic pressure to magnetic pressure) of the final equilibrium state is 
controlled by pmax. 

In Fig. 2, we show the variation of pseudo kinetic energy K, as a function of T, 
during the first step of the relaxation. Here, pmax = 4 x 10e3 is adopted, and 
viscosity is not included. It is to be noted that the peak values of K, just before the 
resets decrease almost exponentially, as T, advances. 

Figure 3 shows the variation of the residual force Rf= ((VP - J x B)*) as a func- 
tion of the relaxation time T2. The series of spikes, which is observed on the curve, 
is due to the deterioration of the perpendicular force-balance during the relaxation 
step 1, namely, the pressure relaxation along the magnetic field (the process of the 
step 1 looks like a spike because T, is skipped in the abscissa of Fig. 3). Note that 
the general tendency of the amplitude of the residual force, as well as the amplitude 
of the spikes, decreases exponentially in the logarithm-linear plot. This fact 
indicates the convergence of the calculation in both the perpendicular and parallel 
directions. 

A convergence check of the amplitude of R, for different grid intervals Au is 
plotted in Fig. 4, where the toroidal interval Au3 is fixed (18 grid points) but the 

I I 

6 

FIG. 4. Convergence check of the amplitude of R, for four cases of grid points with 25’ x 18, 37* x 18, 
45*x 18. and 91* x 18. 
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poloidal intervals du’ and Au2 are changed with the same rate (the value of R, is 
measured at T, = 2OOOt, for each case). We examine four cases with 25 x 25, 
37 x 37, 45 x 45, and 91 x 91 poloidal grid points. The convergence is almost linear. 
(Very recently we have developed a new fourth-order accurate equilibrium code 
with the same relaxation method. A preliminary result shows that the convergence 
is almost cubic. A detail will be reported in the near future.) We also examine 
a liner toroidal interval (34 grid points) for each case, but do not observe any 
significant difference from Fig. 4. 

Figure 5 shows the variation of total kinetic energy K2 as a function of time T, 
during the second step of the relaxation process. In this figure, three different v, 
values are tried. It can be seen that when the viscosity v, is varied, both the 
saturation level and the saturation speed of K2 are changed. 

Figure 6 shows the average toroidal shift [ of the magnetic axis versus time T2 
during the relaxation to equilibrium. Parameters correspond to those of Fig. 5. Two 
different values of v, are considered. For v, = 1.0 x 10 -5, the magnetic axis position 
settles to a steady state after about T, = 15002,. It is seen from Figs. 5 and 6 that 
the behaviors of the development of kinetic energy K2 and magnetic axis shift e 
resemble each other quite well. Thus, the kinetic energy gives the correct measure 
for attainment of the equilibrium. 

It is important to investigate whether the equilibrium thus obtained is a “good” 
equilibrium. We test four cases. Namely, the solutions at the four time points 
(indicated by arrows with A, B, C, and D in Fig. 6) on the relaxation process curves 
are input into the full MHD equations (26k(29) as initial conditions. In this way, 

- Ya so 

---- “8 i 5x10 -6 - 

---pa = I XI0 -5 - 

IllI III1 ,111 

0 loocl 2ooo 3ooo 

TIME (~~1 

FIG. 5. Variation of total kinetic energy K, versus time T, for different values of artificial viscosity 
during the second step of the relaxation. Geometrical, magnetic and dissipation parameters are the same 
as those of Fig. 2. 
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0.4 

I* 

0.2 

0 

-c 

i 

C 

0 Ya -0.0 
x "a = I .o x lo-5 

0 1000 2000 3000 

TIME (TA 1 

FIG. 6. Evolution of average magnetic axis shift during the relaxation to equilibrium for two 
different values of artificial viscosity. Geometrical, magnetic, and dissipation parameters are the same as 
those of Fig. 2. 

the simulation run for the equilibrium is made for about 2000~~ in one-half of a 
toroidal field period. We pay attention to the variations of the configuration of 
magnetic surfaces during the simulation run, especially the position of this magnetic 
axis and the rotational transform profile. The shift of the magnetic axis is 
monitored and plotted in Fig. 7a and b for v, = 0 and v, = 1.0 x 10p5, respectively. 
The relaxation process curves of Fig. 6 are also shown for reference. When the solu- 
tion is not a fairly relaxed equilibrium (case A and C), the magnetic axis makes an 
oscillation with considerable amplitude. When the solution is a fairly relaxed good 
equilibrium (case B and D), the oscillation amplitude is small and the magnetic axis 
retains the initial position quite well. Curve (b) shows that the magnetic axis 
slightly but gradually shifts inward during the simulation, though the variation 
amplitude is only within half of the grid interval. This may be because the starting 
point of B is not a perfectly steady state on the relaxation process curve (i). On the 
other hand, curve (d) oscillates with a slightly larger amplitude than curve (b) 
during the first stage of the simulation. This is because the reorganization occurs 
due to a finite artificial viscosity. 

Figure 8 shows the rotational transform profiles for the same input conditions 
using four different grids: 25’ x 18, 37’ x 18, 37’ x 34, 452 x 18. 

Before moving to the physics study, we briefly comment on the required memory 
size and the computation time in our equilibrium calculation. When a 372 x 18 grid 
size is used, about 15 Mbytes of computer memory are needed. When the calcula- 
tions were made up to 3000 rA in Fig. 3, about 30 min of computer time were 
consumed on the FACOM VP-200 of the Institute of Plasma Physics, Nagoya 
University. 

581/81/l-13 
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0.4 

I- 
0.2 

0 
0 1000 2000 3000 4000 

TIME (~~1 

FIG. 7. Evolution of average magnetic axis shift during the equilibrium sustainment simulation: 
(a) V, =O. Curves (a) and (b) denote the variation of the magnetic axis position starting at the points 
A and B on the relaxation process curve (i) in Fig. 6, respectively. (b) v,= 1.0 x 10e5. Curves (c) and 
(d) denote the variation of the magnetic axis position starting at points C and D on the relaxation 
process curve (j) in Fig. 6, respectively. 

In Fig. 9 the flux surfaces of vacuum configuration are shown. Here, three cuts 
at quarters of the field periods are presented. The outer direction of the toroidal 
curvature is on the right-hand side. The flux surfaces are obtained by integrating 
the magnetic field lines from values of the magnetic field at grid points with a 6th 
order 8-stage Runge-Kutta method. The held line equations are given by 

du’ du2 du3 dl Bl=82=83=B=dU, (30) 

where U is the specific volume and 1 denotes the arc length along the field line. 
In Fig. 10 we show computational results of several finite beta equilibrium 

properties corresponding to the case with pmax =0.004 and v, = 1.0 x 10m5 at 



MAGNETOHYDRODYNAMIC EQUILIBRIA 185 

0.6 

0.4 

x 

0.2 

0 

- 25x25~18 
-x- 37x37~18 
--- 37X37X34 
---- 45x45~18 

0 0.5 I .o 
T 

FIG. 8. Grid size comparison. Rotational transform profile versus average minor radius. 

r = 21242, in Fig. 5. Figure 10a denotes the flux surfaces of final equilibrium fields. 
Also, three cuts at quarters of the field periods are presented. The outer direction 
of the toroidal curvature is on the right-hand side. The final peak beta value PO 
(& = 2p,,/B2 with p,, and B taken at the magnetic axis) is 0.73%. The shift of the 
magnetic axis toward the outer direction of the toroidal curvature and the deforma- 
tion of flux surfaces are observed due to the finite pressure effect. Figure lob shows 
the contours of constant pressure. We can see that the pressure pattern fairly 
relaxes to the magnetic flux surfaces. Figure 1oC denotes the contours of constant 
toroidal current density (or Pfirsch-Schltiter current density), where solid lines 
denote positive values and dotted lines denote negative values. Here, “positive” 

FIG. 9. Initial vacuum magnetic surfaces in a model Wendelstein VII-A stellarator with I = 2, m = 5, 
A, = R,/rfx20 and lo= 0.39. The figures show three cuts at quarters of the field period. The outer 
direction of the toroidal curvature is on the right-hand side. 
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FIG. 10. Equilibrium of a model Wendelstein VII-A stellarator with I = 2, m = 5, A, = R,/i 5 20, and 
/I0 = 0.733%, which is calculated in a non-orthogonal helical coordinates. The figures show three cuts of 
several quantities at quarters of the field period: (a) final equilibrium magnetic surfaces; (b) pressure 
contours at a equilibrium state; (c) current density contours at a equilibrium state. Broken lines denote 
negative values. The separatrix, dividing positive and negative current regions, passes through the 
magnetic axis. 

denotes the u3 = -4 direction. The separatrix, which divides the regions of positive 
and negative current, passes through the magnetic axis. 

As is shown in Fig. 1 la, the relative net current J(Y) = ((J+(Y) - IJ- (Y)l ))/ 
(J+(Y)) in each flux surface vanishes to an accuracy smaller than 5 x 10e2 when 
the poloidal grid points are greater than 37*. Here, J+(Y) and L(Y) denote the 
total values of positive and negative toroidal currents in each flux surface and are 
practically calculated as 

J+(p)=c c j30 
kr,Y+ lW)l ’ 

K+(Y)= {klj3(k)>0) 

J-W)=c,F;,- $$ 
(31) 

K-(Y)= (k(j3(k)<0}, 

where (k} indicates a set of puncture points on a poloidal cross section (u3 = cons- 
tant) which is given by tracing a field line, andj(k) and B(k) are the current density 
and the magnetic field at the position k, respectively. In the diagnosis calculation, 
the numbers of the elements k of the set K, and K- are almost the same and are 
approximately 1500. A typical profile of 3 versus r is plotted in Fig. 11 for two cases 
of grid points. 

Figures 12(a) and (b) are the pressure profile and the toroidal current profile 
along the u1 direction at u2 = 0 on the u3 = 0 constant plane. The current is peaked 
more in the outer region. 
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i 

FIG. ‘11. Profile of the relative net current 1 versus ! for two cases of grid points (45 x 45 x 18 and 
25 x 25 x 18). 

The average toroidal shift is plotted in Fig. 13 for different peak beta values. 
Here, the average magnetic axis shift [ is normalized to the average outermost 
magnetic surface Z It is observed that the shift to the outward direction is almost 
linear in beta up to @ix 50%. 

Figure 14 shows variations of the rotational transform L due to the finite beta 
effect. In the vacuum magnetic field configuration, the rotational transform is nearly 
constant for all flux surfaces inside the ?= 1.0. In the outer region with J2 1.0, 
however, the rotational transform profile has a small positive shear. In experiments, 
these outer flux surfaces are cut by the material limiter and are not practically used. 
When plasma pressure becomes high, the magnetic axis shifts outward and, at the 
same time, the inner magnetic surface near the axis deforms to a larger elliptical 
cross section on an average (see Fig. 10a). Note that, locally, there are parts of the 
flux tube whose cross-sectional ellipticity decreases (for example, at u3 = x/m in 

(a) 
4 x 10-3yj 

a 

2 x 10-3 

0 LA.l 
-1.0 0 1.0 

U’ 

(b) 

0.04 

0.02 

-J 0 

-0.02 

-0.04 w 

, -1.0 1.0 

U’ 

FIG. 12. (a) Pressure protile along the u’ direction at u* = 0 on the u3 = 0 poloidal cross section. 
(b) Toroidal current profile along the u’ direction at u* = 0 on the u3 = 0 poloidal cross section. 
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FIG. 13. Average toroidal shift of the magnetic axis [/a as a function of peak beta value B,, in 
Wendelstein VII-A configuration with x0 = 0.39. 

Fig. 10a). The larger elliptical deformation brings about a larger helical ripple and 
thus raises the rotational transform near the magnetic axis, and the negative shear 
in the j profile appears there. On the other hand, inner magnetic surfaces, within 
which rather high pressure plasma is confined, shift outward and push the outer 
magnetic surfaces where rather low pressure plasma exists. As a result, ellipticity of 
the outer magnetic surface decreases and then the rotational transform there 
becomes lower to some extent. 

, I 

x 

x VACUUM 

FIG. 14. Rotational transform profile versus average minor radius for different values of peak beta 
in Wendelstein VII-A. 
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Figure 15 shows the variation of the magnetic well depth as a function of beta. 
The well depth W is calculated from the expression 

W(r) = U(O) - w x 1o() 
U(O) (percent ), 

where 

(32) 

is evaluated on a surface, U(O) denotes the value on the magnetic axis, and U(f) 
denotes the value on the magnetic surface with average radius ?. When W is 
positive, a global magnetic well exists. When W is negative, the field configuration 
has a magnetic hill, On the other hand, when dW/dF is positive, a local magnetic 
well exists. We find that even for low beta values the axis shift is sufficient to create 
a magnetic well on all flux surfaces. 

For comparison, equilibria were solved not only in the helical coordinates but 
also in the cylindrical coordinates by setting h = 0. From the numerical convergence 
point of view, the former was much better than the latter. 

3.2. Flux Surface Breaking 
It is known that a non-axisymmetric toroidal finite B equilibrium does not 

necessarily have clear nested magnetic surfaces. In a result of the present code, we 

10.0 

* VACUUM 
l Po=O.39% 

fi Po=O.?3% 

FIG. 15. Magnetic well depth versus average minor radius for different values of peak beta in 
Wendelstein VII-A. 
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FIG. 16. The ergodization in the outer flux surfaces due to finite B effect in a low aspect ratio I = 2 
torsatron with rn = 10, A, = 6.7, and &, = 11.5% (grid size is 372 x 18) at (a) u3 = n/10 and (b) u3 = 0. 

observe an appearance of fine island structures and ergodization of the outer flux 
surfaces when /I0 becomes large. Figure 16 shows the example of the flux surface 
breaking in a low aspect ratio I= 2 torsatron with m = 10, A, = 6.7, and /$, = 11.5% 
(grid size is 37* x 18). This configuration has clear nested magnetic surfaces in a 
vacuum field. 

A detailed grid convergence study is also done to confirm the present results. 
Figure 17 shows magnetic surfaces with 61*x 34 grid points for the same 
parameters as that of Fig. 16. There is no essential change for the appearance of the 
ergodic region, when the number of grids is much larger. 

FIG. 7. The same configuration as Fig. 16 but with a larger grid size (61’~ 34). 
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4. CONCLUSION 

By use of the time-dependent relaxation technique, we have developed a 3-dimen- 
sional MHD equilibrium code for toroidal stellarator configurations. Basic equa- 
tions are formulated by a 3-dimensionally extended finite difference method and 
time-advanced by a two-step Lax-Wendroff scheme. These equations are written in 
non-orthogonal helical coordinates. By this choice, the efficient utilization of com- 
puter memory and the improvement of the numerical convergence are realized. 
Also, this allows the treatment of various conligurations, including helical axis 
stellarators, without difficulty. The present approach can utilize realistic vacuum 
field informations, calculated from the accurate representation of actual coil 
configurations. 

Equilibrium calculations have been made for a typical I= 2 stellarator 
(Wendelstein VII-A) and the reliability of the present code has been examined from 
various aspects. The calculation shows physically convincing variations of various 
equilibrium quantities due to finite pressure, i.e., toroidal shift of magnetic axis and 
the deformation of flux surfaces, rotational transform profile, pressure and 
Plirsch-Schliiter current distributions. 

We have demonstrated the breaking up of flux surfaces due to finite /I effect. By 
changing the grid size, we confirmed that it is not due to numerical error but to 
physical reasons. 
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